碳碳双键和单键广泛存在于自然界中。碳碳双键与单键相比,双键的键长更短、键能更大并有 sp2 杂化,这形成了π键并使得所有原子排列在同一平面上,而π平面的存在使双键的结构比柔和的单键更加刚性。同时,具有双键的分子与单键相比会显示出不同的生物学功能。
双键在自然界中普遍存在,脂肪酸就是一个很好的例子。脂肪酸不仅是动物的重要膳食来源和细胞的重要结构成分,它还具有调控受体信号传导、基因表达以及在各种生理条件下调节全身能量稳态的功能。
(资料图)
含有碳碳双键的脂肪酸被称为不饱和脂肪酸,双键所在位置的不同也使得不饱和脂肪酸的形式不同,决定了不饱和脂肪酸的多样性。根据双键距离脂肪酸C端的位置,不饱和脂肪酸又分为ω-3,ω-6,ω-9脂肪酸。不饱和脂肪酸相对于饱和脂肪酸对生理功能的实现贡献更大。例如,鱼油中的主要成分就是三种ω-3脂肪酸,二十二碳六烯酸(DHA), 二十碳五烯酸(EPA)和α-亚麻酸(ALA)。其中,DHA是构成胎儿脑组织的重要成分之一,对于脑细胞的发育起重要作用;EPA可以帮助降低体内胆固醇和甘油三酯的含量,起到促进饱和脂肪酸代谢以及疏导清理心脏血管的作用,但是饱和脂肪酸的摄入会增加心血管疾病的患病风险。
能够被脂肪酸及其衍生物激活的受体称为脂肪酸受体。GPR120(FFAR4)是脂肪酸受体家族成员之一,可识别长链脂肪酸,包括鱼油成分中的ω-3脂肪酸、亚油酸(LA)以及油酸(OA)等常见脂肪酸。GPR120被激活后可以偶联多个下游的不同效应器分子,包括Gq、Gs、Gi和 β-arrestin。
前期研究表明,GPR120可通过其下游Gq信号通路促进GLP1的分泌,进而促进胰岛素分泌,达到降血糖的目的;通过Gi信号通路促进胰岛素以及抑制胃饥饿素的释放;纤毛中的GPR120可以通过其下游Gs信号通路控制脂肪的形成;还可通过介导β-arrestin2信号通路发挥抗炎作用。尽管GPR120识别不同脂肪酸在包括抗炎作用、提高胰岛素敏感性、促进GLP-1的分泌、控制脂肪的形成以及骨的分化等生理过程中作用被广泛研究。
但是GPR120是如何识别脂肪酸特定位置的双键,又是通过怎样的机制识别单双键并将信号转导至下游不同效应器,这些关键科学问题并不清楚。探究脂肪酸受体如何识别不同的不饱和脂肪酸类型,并产生具体的信号功能,成为亟需解决的脂肪酸信号转导和代谢的重要科学问题。
2023年3月2日,山东大学于晓-孙金鹏教授研究团队,联合浙江大学医学院、良渚实验室张岩研究员团队以及山东大学第二医院冯世庆教授团队,在Science期刊在线发表了题为:Unsaturated bond recognition leads to biased signal in a fatty acid receptor(双键的识别引起脂肪酸受体偏好性信号转导)的研究论文。
研究团队利用冷冻电镜解析了在4种脂肪酸配体(EPA、LA、9-HSA、OA)和小分子激动剂TUG891激活下的GPR120-Gi/Giq复合物高分辨率三维结构。
这项发现揭开了GPR120芳香氨基酸选择性识别不饱和脂肪酸不同位置的双键来响应下游不同效应器发挥众多功能的神秘面纱,具有里程碑的意义,为推动开发精准靶向GPR120的新型高效不饱和脂肪酸类药物提供了理论依据和结构基础,同时为糖尿病、肥胖以及炎症等疾病的药物开发和治疗带来新的曙光。
研究团队通过系统药理学分析发现,这些脂肪酸,尤其是不同位置具有双键的脂肪酸对GPR120下游各信号通路具有不同的偏好性,且只有ω-3脂肪酸具有Gs活力。
进一步分析提出了GPR120的芳香族氨基酸识别不饱和脂肪酸双键的机制,并使用了生物化学与计算生物学等多种方法进行了详细的探究。尤其是通过比对GPR120结合不同脂肪酸分子的复合物结构,发现GPR120的配体口袋内共有9个芳香族氨基酸参与了不同位置双键的特异性识别。
通过对比GPR120偶联不同G蛋白亚型复合物结构,发现了影响GPR120下游信号通路偏好性的氨基酸以及潜在的途径,揭示了GPR120 的芳香氨基酸可以与不饱和脂肪酸双键形成π:π相互作用并通过识别不饱和脂肪酸特定位置的双键将特异信号转导至不同下游信号通路从而发挥不同的生理功能。
此外,研究还发现TUG891选择性识别GPR120的结构基础以及GPR120的疾病相关SNP位点的结构基础。
GPR120-Gi/Giq复合体及配体电子密度
浙江大学毛春友研究员、博士研究生秦娇,山东大学肖鹏教授、博士研究生陶晓娜、张超和山东大学齐鲁医院博士后贺庆涛博士为本文共同第一作者;山东大学孙金鹏教授、浙江大学张岩教授、山东大学于晓教授和山东大学第二医院冯世庆教授为文章共同通讯作者。贺庆涛博士由山东大学的孙金鹏教授,冯世庆教授和于晓教授共同指导。